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Abstract
We study pairwise thermal entanglement in three-qubit Heisenberg models
and obtain analytic expressions for the concurrence. We find that thermal
entanglement is absent from both the antiferromagnetic XXZ model, and the
ferromagnetic XXZ model with anisotropy parameter � � 1. Conditions for
the existence of thermal entanglement are discussed in detail, as is the role
of degeneracy and the effects of magnetic fields on thermal entanglement and
the quantum phase transition. Specifically, we find that the uniform magnetic
field can induce entanglement in the antiferromagneticXXX model, but cannot
induce entanglement in the ferromagnetic XXX model.

PACS numbers: 03.65.Ud, 03.67.Lx, 75.10.Jm.

1. Introduction

Over the past few years much effort has been put into studying the entanglement of multipartite
systems both qualitatively and quantitatively. Entangled states constitute a valuable resource in
quantum information processing [1]. Quite recently, entanglement in quantum operations [2–4]
and entanglement in indistinguishable fermionic and bosonic systems [5–7] have been
considered. Entanglement in two-qubit states has been well studied in the literature, as have
various kinds of three-qubit entangled states [8–10]. The three-qubit entangled states have
been shown to possess advantages over the two-qubit states in quantum teleportation [11],
dense coding [12] and quantum cloning [13].

An interesting and natural type of entanglement, thermal entanglement, was introduced
and analysed within the Heisenberg XXX [14], XX [15], and XXZ [16] models as well as
the Ising model in a magnetic field [17]. The state of the system at thermal equilibrium is
represented by the density operator ρ(T ) = exp(− H

kT
)/Z, where Z = tr

[
exp(− H

kT
)
]

is the
partition function, H the system Hamiltonian, k is Boltzmann’s constant which we henceforth
take equal to 1, and T the temperature. As ρ(T ) represents a thermal state, the entanglement
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in the state is called thermal entanglement [14]. A complication in the analysis is that,
although standard statistical physics is characterized by the partition function, determined by
the eigenvalues of the system, thermal entanglement properties require in addition knowledge
of the eigenstates.

The Heisenberg model has been used to simulate a quantum computer [18], as well as
quantum dots [18], nuclear spins [19], electronic spins [20] and optical lattices [21]. By
suitable coding, the Heisenberg interaction alone can be used for quantum computation [22].
The entanglement in the ground state of the Heisenberg model has been discussed by O’Connor
and Wootters [23].

In previous studies of thermal entanglement analytical results were only available for two-
qubit quantum spin models. In this paper we analyse the three-qubit case, i.e. we consider
pairwise thermal entanglement in three-qubit Heisenberg models.

A general three-qubit Heisenberg XYZ model in a non-uniform magnetic field B is
given by

H = HXYZ + Hmag

HXYZ =
3∑

n=1

(
J1

2
σx
n σ

x
n+1 +

J2

2
σy
n σ

y

n+1 +
J3

2
σ z
nσ

z
n+1

)

Hmag =
3∑

n=1

Bnσ
z
n .

(1)

We use the standard notation, detailed later, and assume a periodic boundary, identifying the
subscript 4 with 1 in the above expressions. For the three-qubit case even this most general
scenario is susceptible to numerical analysis. However, in this paper we shall restrict ourselves
to special cases of equation (1) for which we are able to provide a succinct analytic treatment.

The three-site Heisenberg models we will study in this paper are the following:

(1) The XX model, corresponding to J1 = J2, J3 = 0 and B = 0.
(2) The XXZ model, for which J1 = J2, J3 �= 0 and B = 0.
(3) The XXZ model with uniform magnetic field (B1 = B2 = B3).

We start in section 2 by examining the three-qubit XX model. In sections 3, 4, and 5, we study
thermal entanglement in the XX model, the XXZ model and the XXZ model in a magnetic
field, respectively.

During the course of the analysis it will become clear that degeneracy plays an important
role in thermal entanglement, as does the presence of magnetic fields. We find the critical
temperatures involved in the quantum phase transition associated with the existence of
entanglement in these quantum spin models.

2. The three-qubit XX model and its solution

The three-qubit XX model is described by the Hamiltonian [24]

HXX = J

2

3∑
n=1

(
σx
n σ

x
n+1 + σy

n σ
y

n+1

)

= J

3∑
n=1

(
σ +
n σ

−
n+1 + σ−

n σ
+
n+1

)
(2)

where σα
n (α = x, y, z) are the Pauli matrices of the nth qubit, σ±

n = 1
2

(
σx
n ± iσy

n

)
the

raising and lowering operators, and J is the exchange interaction constant. Positive (negative)
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J corresponds to the antiferromagnetic (ferromagnetic) case. As signalled above, we adopt
periodic boundary conditions; σx

4 = σx
1 , σy

4 = σ
y

1 . We are therefore considering a three-qubit
Heisenberg ring. The XX model was intensively investigated in 1960 by Lieb et al [24]. More
recently the XX model has been realized in the quantum-Hall system [25], the cavity QED
system [26] and quantum dot spins [27] for a quantum computer.

In order to study thermal entanglement, the first step is to obtain all the eigenvalues and
eigenstates of the Hamiltonian equation (2). The eigenvalues themselves do not suffice to
calculate the entanglement. The eigenvalue problem of the XX model can be exactly solved
by the Jordan–Wigner transformation [28]. In the three-qubit case the eigenvalues are more
simply obtained as [15]

E0 = E7 = 0

E1 = E2 = E4 = E5 = −J

E3 = E6 = 2J

(3)

and the corresponding eigenstates are explicitly given by

|ψ0〉 = |000〉
|ψ1〉 = 3−1/2(q|001〉 + q2|010〉 + |100〉)
|ψ2〉 = 3−1/2(q2|001〉 + q|010〉 + |100〉)
|ψ3〉 = 3−1/2(|001〉 + |010〉 + |100〉)
|ψ4〉 = 3−1/2(q|110〉 + q2|101〉 + |011〉)
|ψ5〉 = 3−1/2(q2|110〉 + q|101〉 + |011〉)
|ψ6〉 = 3−1/2(|110〉 + |101〉 + |011〉)
|ψ7〉 = |111〉

(4)

with q = exp(i2π/3) satisfying

q3 = 1
q2 + q + 1 = 0.

(5)

This set (4) of three-qubit states is itself interesting. Rajagopal and Rendell [10] have
considered a similar set of three-qubit states which they have classified by means of permutation
symmetries. Here the states |ψ0〉, |ψ3〉, |ψ6〉, and |ψ7〉 are symmetric in the permutation of
any pair of particles. We define a cyclic shift operator P by its action on the basis |ijk〉 [29]

P |ijk〉 = |kij〉. (6)

Obviously the four states |ψ0〉, |ψ3〉, |ψ6〉, and |ψ7〉 are the eigenstates of P with eigenvalue 1.
The other four states in the set (4) are also eigenstates of P as follows:

P |ψi〉 = q2|ψi〉 (i = 1, 4) (7a)

P |ψj 〉 = q|ψj 〉 (j = 2, 5). (7b)

This is not surprising since the Hamitonian HXX as well as the other Hamiltonians considered
later are invariant under the cyclic shift operator.

For J > 0 (J < 0) the ground state is four (two)-fold degenerate. We will see that
the degeneracy of the system influences thermal entanglement greatly. There is no pairwise
entanglement in the eigenstate |ψ0〉 and |ψ7〉. Pairwise entanglement exists in the state |ψi〉
(i = 1, 2, . . . , 6) and the concurrence between any two different qubits is given by 2/3 [8,30].
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3. Thermal entanglement in the XX model

We first recall the definition of concurrence [31] between a pair of qubits. Let ρ12 be the
density matrix of the pair and it can be either pure or mixed. The concurrence corresponding
to the density matrix is defined as

C12 = max {λ1 − λ2 − λ3 − λ4, 0} (8)

where the quantities λi are the square roots of the eigenvalues of the operator

 12 = ρ12(σ
y

1 ⊗ σ
y

2 )ρ
∗
12(σ

y

1 ⊗ σ
y

2 ) (9)

in descending order. The eigenvalues of  12 are real and non-negative even though  12 is not
necessarily Hermitian. The values of the concurrence range from zero, for an unentangled
state, to one, for a maximally entangled state.

The state at thermal equilibrium is described by the density matrix

ρ(T ) = 1

Z
exp(−βH),

= 1

Z

7∑
k=0

exp(−βEk)|ψk〉〈ψk| (10)

where β = 1/T . From equation (3), the partition function is obtained as

Z = 2 + 4eβJ + 2e−2βJ . (11)

From equations (3) and (10), the density matrix can be written as

ρ(T ) = 1

Z
[|ψ0〉〈ψ0| + |ψ7〉〈ψ7| + eβJ (|ψ1〉〈ψ1| + |ψ4〉〈ψ4|

+ |ψ2〉〈ψ2| + |ψ5〉〈ψ5|) + e−2βJ (|ψ3〉〈ψ3| + |ψ6〉〈ψ6|)]. (12)

In this paper we consider only pairwise thermal entanglement, and so we need to calculate
the reduced density matrix ρ12(T ) = tr3(ρ(T )). We denote the reduced density matrix
tr3[|ψi1〉〈ψi1 | + · · · + |ψiN 〉〈ψiN |] by ρ

(i1i2...iN )
12 . From equation (4), we obtain

ρ
(07)
12 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 (13a)

ρ
(1245)
12 = 2

3




1 0 0 0
0 2 −1 0
0 −1 2 0
0 0 0 1


 (13b)

ρ
(36)
12 = 2

3




1
2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

2


 (13c)

ρ
(012)
12 = 2

3




5
2 0 0 0
0 1 − 1

2 0
0 − 1

2 1 0
0 0 0 0


 (13d)

ρ
(12)
12 = 2

3




1 0 0 0
0 1 − 1

2 0
0 − 1

2 1 0
0 0 0 0


 . (13e)
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The last two reduced density matrices will be used later.
From equations (12) and (13a)–(13c), we obtain

ρ12(T ) = 1

Z

(
ρ
(07)
12 + eβJ ρ(1245)

12 + e−2βJ ρ
(36)
12

)

= 2

3Z



v 0 0 0
0 w y 0
0 y w 0
0 0 0 v


 (14)

with

v = 3
2 + eβJ + 1

2 e−2βJ

w = 2eβJ + e−2βJ

y = e−2βJ − eβJ .

(15)

The square roots of the four eigenvalues of the operator  12 are

λ1 = 2(w − y)

3Z
λ2 = 2(w + y)

3Z
λ3 = λ4 = 2v

3Z
. (16)

From equations (8), (11), (14), and (16), we obtain the concurrence [23]

C = 4

3Z
max(|y| − v, 0) (17)

= max

[
2|e−2x − ex | − 3 − 2ex − e−2x

3(1 + 2ex + e−2x)
, 0

]
(18)

where x ≡ βJ = J/T . The concurrence depends only on the ratio of J and T . Due to
symmetry under cyclic shifts, the value of the concurrence does not depend on the choice of
the pair of qubits.

From (18) we see that entanglement appears only when

2|z−2 − z| − 3 − 2z − z−2

3(1 + 2z + z−2)
> 0 (19)

or in other words

2|z−2 − z| − 3 − 2z − z−2 > 0 (20)

where z = exp(x). We now consider two different cases:

Case 1. Antiferromagnetic system; J > 0; z−2 − z < 0. In this case relation (20) requires

z−2 < −1 (21)

which is impossible. So there is no entanglement when J > 0.

Case 2. Ferromagnetic system; J < 0, z−2 − z > 0. Relation (20) becomes

z−2 − 4z − 3 > 0 (22)

or

f (z) ≡ 4z3 + 3z2 − 1 < 0. (23)

The function f (z) is an increasing function of the positive real argument z and relation (23)
is valid iff 0 < z < zc, where the critical value zc determined by f (zc) = 0 is 0.4554; that is,
x < −0.7866. For fixed J , we obtain the critical temperature Tc = 1.217 36|J |, above which
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there is no thermal entanglement. The critical temperature depends linearly on the absolute
value of J .

In the ferromagnetic case the concurrence

C = max

[
1 − 4z3 − 3z2

3(1 + 2z3 + z2)
, 0

]
(24)

reaches its maximum value of 1/3 when z → 0, that is whenx → −∞. Since the entanglement
is a monotonic increasing function of C this means that the entanglement attains its maximum
value for zero temperature, whenJ is finite and nonzero. For finite temperatures, this maximum
is also attained when J → −∞.

In summary, we find that

Theorem 1. The XX model is thermally entangled if and only if J < −0.7866T ; maximum
entanglement is attained when T → 0 or J → −∞.

The above discussion shows that in our three-qubit model pairwise thermal entanglement
occurs only in the ferromagnetic case. This result differs from that for the two-qubit XX
model, for which thermal entanglement exists in both the antiferromagnetic and ferromagnetic
cases [15].

For the ferromagnetic case the states |ψ3〉 and |ψ6〉 constitute a doubly-degenerate ground
state. Equation (24) shows that the concurrence C = 1/3 at zero temperature. As noted in the
last section the concurrence for any two qubits in the state |ψ3〉 or |ψ6〉 is 2/3. Here the value
1/3 appears due to the degeneracy. In fact, at zero temperature, the thermal entanglement can
be calculated from ρ

(36)
12 (13e). After normalization it is easy to obtain the concurrence, which

is just 1/3.

4. The anisotropic Heisenberg XXZ model

We now consider a more general Heisenberg model, the anisotropic Heisenberg XXZ model,
which is described by the Hamiltonian [32]

HXXZ = HXX +
�J

2

3∑
n=1

(σ z
nσ

z
n+1 − 1) (25)

where � is the anisotropy parameter. The model reduces to the XX model when � = 0, and
the isotropic Heisenberg XXX model when � = 1.

It is straightforward to check that the added anisotropic term HXXZ − HXX commutes
with HXX. Therefore the eigenstates of the XXZ model are still given by equation (4), now
with the different eigenvalues

E0 = E7 = 0
E1 = E2 = E4 = E5 = −2J (� + 1

2 )

E3 = E6 = −2J (� − 1).

(26)

Following the procedure of the previous section, we obtain the concurrence, which is
of the same form as equation (17) with, however, the parameters v,w, y, and the partition
function Z now given by

v = 3
2 + 1

2z
2�(2z + z−2)

w = z2�(2z + z−2)

y = z2�(z−2 − z)

Z = 2 + 2z2�(2z + z−2).

(27)



Thermal entanglement in three-qubit Heisenberg models 11313

As in the last section, since Z is always positive, we need only consider

f (�, z) ≡ |y| − v

= z2�|z−2 − z| − 3
2 − z2�+1 − 1

2z
2�−2 (28)

to determine whether entanglement occurs or not. Again, we have to consider two
different cases:

Case 1. When J > 0 (z > 1), namely the antiferromagnetic XXZ model, the condition on
f (�, z) leads to

z2�−2 = e2x(�−1) < −1 (29)

which is impossible. So there is no entanglement in this case, irrespective of �.

Case 2. When J < 0 (z < 1), namely the ferromagnetic XXZ model, the condition
f (�, z) > 0 gives

z2�−2 − 4z2�+1 − 3 > 0. (30)

We consider some special values of �.

(1) � � 1: For � = 1 the relation (30) implies z3 < −1/2 which is impossible. So there is
no entanglement in the XXX model. We can further prove that there is no entanglement
for � > 1. In fact, it is easy to see that

f (�, z) < z2(�−1) − 3 < 0 (31)

where we have used the inequalities z2�+1 > 0 and z2(�−1) < 1 for � > 1 and z < 1.
This means C = 0 and thus there is no entanglement.

(2) � = 1/2: In this case [33] the entanglement condition is obtained as

4z3 + 3z − 1 < 0 (32)

which is an increasing function of z. So the model is entangled iff 0 < z < zc ≈ 0.298,
where zc is determined as a root of 4z3 + 3z − 1 = 0.

(3) � = −1/2: this is an interesting case whose importance has been emphasized
recently [34]. From the eigenvalues we see that the excited state of the system is 6-fold
degenerate when � = −1/2. The function f (�, z) now reduces to z−3 − 7, from which
the critical values zc and Tc are obtained analytically as zc = 7−1/3, Tc = 3|J |/ln 7 ≈
1.5417|J |.

(4) The limit case � → −∞: the critical value zc is now determined by z−2 − 4z = 0, i.e.
zc = 4−1/3. Therefore the critical temperature Tc = 3|J |/ ln 4 ≈ 2.164|J |.

Finally, for more general values of the anisotropy parameter we need to resort to numerical
calculations. Figure 1 is a plot of the critical temperature as a function of the anisotropy
parameter �. From this we see that the critical temperature decreases as � increases, and
reaches the asymptotic value Tc = 2.1640|J | as � → −∞.

We now give further analytical results for the case � < 1 and z < 1. Consider f (�, z)

as a function of �. Then, from

∂f (�, z)

∂�
= (ln z)z2�(z−2 − 4z)




= 0 when z = z0 ≡ 4−1/3 ≈ 0.629 96

> 0 when z > z0

< 0 when z < z0

(33)

we see that f (�, z) is an increasing (decreasing) function when z > z0 (z < z0). We consider
these cases separately.
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∆
Figure 1. The critical temperature Tc as a function of the
anisotropy parameter �. The exchange constant J = −1.

0

1

2

3

4

5

-7 -6 -5 -4 -3 -2 -1 0 1
∆

(∆)f

Figure 2. The function f (�, z) with respect
� for z = 0.6295, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1
(from left to right).

Case 2a. When z = z0, f (�, z0) = −3 < 0. So there is no entanglement in this case.

Case 2b. When z > z0, the function f (�, z) is an increasing function which reaches its
maximum when � → 1. Since we have seen that there is no entanglement when � = 1

f (�, z) < f (1, z) < 0 for z > z0 (34)

which means that there is no entanglement when z > z0.

Case 2c. The case z < z0. Define the z-dependent point �z by f (�z, z) = 0 where

�z = 1

2βJ
ln

[
3

z−2 − 4z

]
< 1. (35)

Thus from equation (33) we know that f (�, z) > 0 when � < �z for all z < z0, which is
just the condition for entanglement.

In figure 2 we give plots of f (�, z) for z = 0.6295, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1. Note that
�z is a decreasing function of z and that

�z →
{

−∞ when z → z0

1 when z → 0
(36)

as indicated in figure 2.
In summary, we have the following theorem:
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Figure 3. The concurrence as a function of � and J .
The temperature T = 1.

Theorem 2. The XXZ model exhibits thermal entanglement only when z < z0, that is,
J < −0.4621T , and � < �z.

Note that theorem 2 is entirely consistent with theorem 1, since �z = 0 in equation (35)
corresponds to J = −0.7866T .

In figure 3 we plot the concurrence as a function of the anisotropy parameter � and
exchange constant J . The figure shows that there is no thermal entanglement for the
antiferromagnetic (J > 0) XXZ model, nor for the ferromagnetic (J < 0) XXZ model
when � � 1.

To end this section we investigate the concurrence at zero temperature. Nonzero
concurrence occurs for the case � < 1, J < 0. In this case, the doubly-degenerate ground
state consists of |ψ3〉 and |ψ6〉. We may calculate the concurrence C = 1/3 directly from the
density matrix ρ

(36)
12 .

5. Effects of magnetic fields

In this section we consider the effect of magnetic fields on thermal entanglement. The XXZ
model with uniform magnetic field B along the z direction is given by

HXXZM = HXXZ + B

3∑
n=1

σ z
n . (37)

It is easy to check that the added magnetic term commutes with the Hamiltonian HXXZ .
Therefore the eigenstates of the XXZ model are given by equation (4). The eigenvalues
are now

E0 = −3B
E1 = E2 = −2J (� + 1

2 ) − B

E3 = −2J (� − 1) − B

E4 = E5 = −2J (� + 1
2 ) + B

E6 = −2J (� − 1) + B

E7 = 3B.

(38)

We see that the magnetic field partly removes the degeneracy.
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With a derivation completely analogous to that of sections 3 and 4, the reduced density
operator is

ρ12 = 2

3Z



u 0 0 0
0 w y 0
0 y w 0
0 0 0 v


 (39)

with

u = 3
2 e3βB + 1

2 eβBz2�(2z + z−2)

v = 3
2 e−3βB + 1

2 e−βBz2�(2z + z−2)

w = cosh (βB)z2�(2z + z−2)

y = cosh (βB)z2�(z−2 − z)

Z = 2 cosh (3βB) + 2 cosh (βB)z2�(2z + z−2).

(40)

The concurrence is then given by

C = 4

3Z
max

(|y| − √
uv, 0

)
. (41)

As an immediate consequence we see that the concurrence is an even function of the magnetic
field.

As the quantitiesZ, u, v are all positive, for convenience we consider the quantity y2 −uv

instead of |y| − √
uv. Thermal entanglement occurs when

y2 − uv = h cosh (2βB) − g > 0 (42)

where

g = 1
4 [9 + z4(�−1)(2z6 + 8z3 − 1)]

h = 1
2z

2�[z2�(z−2 − z)2 − (6z + 3z−2)].
(43)

We now consider the effect of a magnetic field on the thermal entanglement.
We first consider the XXX model, � = 1, which does not exhibit thermal entanglement

when B = 0. One might expect that the magnetic field would induce thermal entanglement.
It is easy to see that

2(y2 − uv) = cosh(2βB)(z6 − 8z3 − 2) − (z3 + 2)2. (44)

If z < (4 + 3
√

2)1/3 ≈ 2.02, z6 − 8z3 − 2 < 0 and thus y2 − uv < 0 for any B. So for this
range of z values there is no thermal entanglement no matter how strong the magnetic field
is. However, when z > (4 + 3

√
2)1/3, z6 − 8z3 − 2 > 0 and the condition for entanglement

becomes

cosh (2βB) >
(z3 + 2)2

z6 − 8z3 − 2
(45)

which can be fulfilled for strong enough B. So a magnetic field can induce entanglement in
the XXX model when z > (4 + 3

√
2)1/3.

Now consider the case � = −1/2. From equation (43) we obtain

h = 1
2 (p

2 − 5p − 5) (46)

g = 1
4 (11 + 8p − p2) (47)

h − g = 1
4 (3p

2 − 18p − 21) (48)

which are parabolas in p ≡ z−3, as shown in figure 4. We consider three different cases:
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Figure 4. The functions h, g, and h − g in terms of p = z−3.

Case 1. p < p1 = 5/2 + 3
√

5/2, In this case h < 0, g > 0, h− g < 0 and y2 − uv < 0. So
there is no thermal entanglement.

Case 2. p1 < p < p2 = 7. In this case h > 0, g > 0, h − g < 0. So y2 − uv > 0, and so
entanglement appears if the magnetic field is strong enough.

Case 3. p2 < p. In this case h > 0, h − g > 0 and y2 − uv is always positive; that is, here
the XXZ model exhibits thermal entanglement for any magnetic field. Note that p2 = z−3

c

where zc is the critical value given in last section.
The above two models show that the magnetic field can either induce entanglement in a

non-entangled system or extend the entanglement range for an already entangled system.
In figure 5 we plot the concurrence as a function of the magnetic field B and exchange

constant J . At B = 0 there is no thermal entanglement. The entanglement increases with the
magnetic field |B| until it reaches a maximum value, then decreases and gradually disappears.
We can clearly see that there is no thermal entanglement for the ferromagnetic case, while
thermal entanglement exists for the antiferromagnetic case. In other words, we can induce
entanglement in the antiferromagneticXXX system by introducing a magnetic field, but cannot
induce entanglement in the ferromagnetic XXX system for any strength of magnetic field.

Figure 6 gives a plot of the concurrence as a function of the temperature for different
magnetic fields. One can see that there exist critical temperatures above which the entanglement
vanishes. It is also noteworthy that the critical temperature increases as the magnetic field B

increases. Consider the interesting case B = 2. We observe that the concurrence is zero at
zero temperature and there is a maximum value of concurrence at a finite temperature. The
entanglement can be increased by increasing the temperature. The maximum value is due
to the optimal mixing of all eigenstates in the system. When considering zero temperature
we find that there are different limits for different magnetic fields. Actually a more general
result exists:

lim
T→0

C(�,B, 1, T ) = 1
3 for � > |B| − 1/2

= 2
9 for � = |B| − 1/2

= 0 for � < |B| − 1/2.
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Figure 5. Concurrence as a function of the magnetic field B and the exchange constant J . The
temperature T = 1 and the anisotropy parameter � = 1.
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Figure 6. Concurrence as a function of T for different magnetic fields B = 1 (solid curve), 3/2
(dashed curve), and 2 (circle point curve).

The special point T = 0, � = B − 1/2 (B � 0 is assumed without loss of generality), at
which the entanglement undergoes a sudden change with adjustment of the parameters � and
B, is the point of quantum phase transition [35]. The quantum phase transition takes place at
zero temperature due to the variation of interaction terms in the Hamiltonian. By examining
the eigenvalues (38) we can understand the phase transition. When � = B − 1/2, the ground
state contains the three-fold degenerate states |ψ0〉, |ψ1〉, and |ψ2〉. One may calculate the
thermal entanglement from the density matrix ρ(012)

12 (13d) and find the concurrence to be 2/9.
When � > B − 1/2, the ground state contains the two-fold degenerate states |ψ1〉 and |ψ2〉.
The concurrence has the value 1/3 as calculated from ρ

(12)
12 (13e). When � < B − 1/2, the

ground state is |ψ0〉 and not degenerate. And the concurrence is zero in this case.
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6. Conclusions

Apart from being a fundamental property of quantum mechanics, it appears that entanglement
may provide an important resource in quantum information processes. One source of
entanglement is provided by magnetic systems, such as those modelled in this paper. Within
the current state of knowledge, only measures for pairwise entanglement are available. Thus,
in order to study the entanglement properties of systems more complex than those simply
involving two qubits, it is necessary to adopt a procedure whereby one traces out a subsystem,
leaving effectively only a two-qubit system for which we can calculate the concurrence, which
in turn gives a measure of the entanglement. Using this procedure, we have studied pairwise
thermal entanglement in the following Heisenberg models; theXXmodel, theXXZ model and
the XXZ model in a magnetic field. We obtained analytical expressions for the concurrence,
which indicated no thermal entanglement for the antiferromagnetic XXZ model, nor for
the ferromagnetic XXZ model when the anisotropy parameter � � 1. Conditions for the
existence of thermal entanglement were studied in detail. The effects of magnetic fields on
entanglement were also considered. We found that the magnetic field can induce entanglement
in the antiferromagnetic XXX model, but cannot induce entanglement in the ferromagnetic
XXX model, no matter how strong the magnetic field is.

In this paper we have extended previous work on thermal entanglement from two-qubit
models to three qubit models, concentrating on those systems where the pairwise entanglement
can be studied analytically. It would be an attractive proposition to extend further the
investigation of such Heisenberg models to the N -qubit case, which are under consideration.
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[5] Schliemann J, Cirac J I, Kuś M, Lewenstein M and Loss D 2001 Phys. Rev. A 64 022303
[6] Li Y S, Zeng B, Liu X S and Long G L 2001 Phys. Rev. A 64 054302
[7] Zanardi P 2001 Preprint quant-ph/0104114
[8] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[9] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306

Sudbery A 2001 J. Phys. A: Math. Gen. 34 643
Carteret H A and Sudbery A 2000 Preprint quant-ph/0001091
Brun T A and Cohen O 2001 Phys. Lett. A 281 88
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